Acta Simulatio - International Scientific Journal about Simulation

PROCEDURE FOR DRAFTING A PROJECT AND SELECT THE MOST APPROPRIATE VARIANTS OF SIMULATION MODELS FOR OPTIMIZING ASSEMBLY LINE DOORS OF CAR Marek Kliment; Peter Trebuňa; Radko Popovič; Miriam Pekarčíková

PROCEDURE FOR DRAFTING A PROJECT AND SELECT THE MOST APPROPRIATE VARIANTS OF SIMULATION MODELS FOR OPTIMIZING ASSEMBLY LINE DOORS OF CAR

Marek Kliment

TU of Košice, Faculty of Mechanical Engineering, Institute of technology and management, Department of Industrial Engineering and Management, Nemcovej 32, 04 200 Košice, marek.trebuna@tuke.sk

Peter Trebuňa

TU of Košice, Faculty of Mechanical Engineering, Institute of technology and management, Department of Industrial Engineering and Management, Nemcovej 32, 04 200 Košice, peter.trebuna@tuke.sk

Radko Popovič

TU of Košice, Faculty of Mechanical Engineering, Institute of technology and management, Department of Industrial Engineering and Management, Nemcovej 32, 04 200 Košice, radko.popovic@tuke.sk

Miriam Pekarčíková

TU of Košice, Faculty of Mechanical Engineering, Institute of technology and management, Department of Industrial Engineering and Management, Nemcovej 32, 04 200 Košice, miriam.pekarcikova@tuke.sk

Keywords: simulation, optimization, variant, statistics, project

Abstract: The content of this paper is a proposal for assembly line doors of car and their components. It describes the Procedure for drafting a project for evaluate the suitability of alternatives using simulation models of these variants workplaces. These of variants each other qualitatively and quantitatively compares and describes effective and optimal. At the beginning of post briefly describes the theoretical knowledge of the field of simulation and clarifies their advantages and disadvantages.

1 Simulation and its use

The notion of simulation is presented as statistically research method, which follows from the nature of the system under examination, from which are obtained information on the researched system. Output data using computer simulations give a realistic picture of the documents that are necessary for the development of downstream analyzes. The cycle uses the simulation model at an early stage is to build the model to the real system, where they carry out the necessary experiments. These are then interpreted correct results, which are constantly optimized to improve the understanding of the actual or future system. Computer simulation does not allow obtaining direct, optimal results, respectively. their solutions. Therefore, it is applied as a support system. With his help is possible to test different effects carried on the simulation models. The result is a solution that can help improve productivity and quality. The object of each generated simulation process is to identify the goals that are helpful to achieving specific results. When simulating systems, objectives determined by the structure of planning, experimentation and subsequent evaluation.

By help clearly defined objectives simulating and experimental systems, it is necessary to ask questions such as:

- What is achieved by a given stimulation?
- How much time is required to the simulation?

- Which aims are achieved using simulation?
- Why is needs aim achieved by the help a simulation?

Volume: 1 2015 Issue: 1 Pages: 7-11 ISSN 1339-9640

• Who is responsible for target a simulation?

The main advantage of simulation lies in its method of interpretation of the simulated process. By using in the currently available simulation software can convert simulation in the process of the desired time (several minutes) to obtain the amount of output information in the form of the output message, such as use of machinery, downtime, efficiency, critical path.

Processes in which a suitable resp. inappropriate applied simulation are shown in Table 1.

Table 1 Suitability for u	se simulation in processes			
Suitability for use a	Inappropriateness for use			
simulation	a simulation			
If it is necessary in a short	Simulation can be			
time draw conclusions	administered less accurate			
behavioral processes,	results than direct			
which in real time was a	mathematical analysis			
longer				
Creating a virtual	The need for financial			
presentation behavior of	resources exceeds the limit			
the new system using the				
selected animation				

Experimentation using	Been studied system can be
simulation process does	addressed a mathematical
not disrupt the functioning	way (analytically)
of the real system	
The use of simulation for	Insufficient and inaccurate
verification of the	information to support the
analytical solutions -	simulation experimenting
process control	
Removing badly proposed	The credibility and
experiment and thus	reliability of the models is
avoiding unnecessary	low - simulation model
disaster, waste of	represents only stochaticky
resources	system elements
Properties in under the	Required demanding
examination system are	hardware for of complex
changing (changing very	realistic simulation systems
quickly, resp. slow)	
Use as a tool to gain the	To create the model
experience, resp. workout,	required expertise and
training	training
More flexible presentation	
as mathematical	
simulation	

2 Proposal phase of the project

In this first phase, propose a model element halls for manufacturing doors,here are formed chosen models of machinery and auxiliary equipment. Designing takes place on the basis of technological production layout together with the implementation of compliance with technological and handling areas. The draft plan view of two variants of the line was used software AutoCAD Architecture (Fig. 1.2)

Fig. 1 Proposal layout in variant 1

Fig. 2 Proposal layout in variant 2

3 Simulation and a optimization phase of the project

The simulation-optimization phase of the project was used alone simulation tool to create a simulation model of the production line. This tool was a software module Tecnomatix Plant Simulation. When processing simulation models was necessary to know all the components required for the manufacture and installation of doors and according to them layout design workplaces. At the Figure 3 shows the essential components of the door.

Fig. 3 Parts in the car doors

3.1 Proposal variants of production

Processing simulation models originated by the insertion of duplicate objects from the tree structure formed on a simulation desktop using drawing documentation of and technological operations.

Fig. 4 Simulation model for Variant 1 in 2D and 3D

After entering the time horizons of all objects began tracking simulation process, which had to be constantly tweaking mostly conveyor time structure to achieve the desired parameters of the whole production line. This a lengthy process with the task of removing various deficiencies in the production process. As one variant is not possible to assess whether the correct and most appropriate for the production process, it is necessary to propose at least 2 variants. The second type of layout configuration plant and equipment was specific in that compared to Option 1 has two storages and shorter length of the conveyor to different sections of the production line. The second type of workplace generated 3D model (Fig 5) is different structure and length of the conveyor. Edit conveyor was also treated in a similar manner to the first variant.

Fig. 5 Simulation model for Variant 2 in 2D and 3D

Manufacturing time of each operation are shown in Table 2. This is necessary to know the times for setting the different elements of the simulation and comparison at change layout workplaces.

Operation	Time of the operation (s)	Manipulation time (s)		
Shearing	20	2		
Surface forming	30	2		
Welding	120	10		
Door assembly	120	50		
Paint Application	300	10		
Door dismantling	120	50		
Assembly components	180	100		
Inserting door and control	300	80		
Together	1190 s	304 s		

Table 2 Manı	ufacturing time of ea	ich operation
	Time of the	Moninulati

Output statistics needed for the evaluation is obtained by running the quick simulation, which are all referred to objects in the simulation area, the program generates detailed output statistics. Then carries out evaluation and appropriateness of the varianst.

When comparing variants of assess data relating to the productivity of individual items in the simulation model, further compare, for example, material flow both

variants. Table 3 highlights the difference between the two variants, and displays data on the use of machines or individual operations in the manufacture of a door.

Activity / operation	Variant 1 %	Variant 2 %	The suitability of variant
Shearing press 1	17,27	23,37	V2
Shearing press 2	9,09	23,37	V2
Forming press 1	10,30	30,43	V2
Forming press 2	4,85	30,43	V2
Assembly reinforcement	9,09	33,70	V2
Welding	9,09	32,61	V2
Installation of doors on the car body	18,18	8,70	V 1
Lacquering	45,44	21,74	V1
Assembly door components 1	18.18	21,74	V2
Assembly door components 2	18,18	21,74	V2

 Table 3 Comparison of productivity selected Machines

The evaluation of the output is defined optimum use of machinery and operations in favor of the second variant in ratio of 8/2, which is mainly reflected in the operations of pressing and folding operations along with welding.

Output statistics provide also information on the use of industrial robots KUKA in the manufacturing process of welding and material handling. Are taken into account data in the form of waiting times material when folding door reinforcement in the process of welding and assembly of components for bodywork.

KUKA	Variant 1	Variant 2 Waiting time for material%			
robots	Waiting time for material%				
KUKA 0	23,28	94,14			
KUKA 1	54,84	93,62			
KUKA 2	1,85	90,56			
KUKA 3	84,52	16,54			
Average waiting time	41,12 %	73,72 %			

Table 4 Statistics for manipulation KUKA robots

In the process of waiting time in material handling is a useful first indications variant with an average waiting time 41.12%, compared to the waiting longer variant 2 with a 73.72% average waiting time. The use of robots in material handling in the production process (Tab.5).

Table 5 The range	materials handling	with of the robots
-------------------	--------------------	--------------------

Variant 1						V	arian	t 2	
Object Rotation Empty Rotation Loaded				Object Rotation Empty Rotation Loade			n Loaded		
	Portion	Sum	Portion	Sum		Portion	Sum	Portion	Sum
KUKA	0.08%	2.6565	0.09%	2.9517	KUKA	0.90%	49.7199	0.90%	49.5640
KUKA1	0.29%	9.6565	0.26%	8.7468	KUKA1	0.59%	32.5000	1.16%	1:04.0000
KUKA2	0.12%	4.0000	0.15%	5.0000	KUKA2	0.01%	0.2952	0.01%	0.6695
КИКАЗ	0.00%	0.0000	0.03%	1.0000	KUKA 3	0.07%	3.7133	0.05%	2.6780

From the outputs listed in Tab.5 shows that Variant 2 is optimal, as it provides a greater range of operation of material handling processes compared to first variant. After an evaluation of selected parameters productivity of machines, as well as working and waiting times, along with other generated and selected data and statistics presented simulation software can be considered more appropriate Variant 2.

Conclusions

Simulation software facilitate the activity in decisionmaking process when comparing different variants of optimization and improvement of production efficiency. With The comparison of statistics, it is clear that in this case is for improve the process of making effective Variant 2. This assessment possibilities of improvement of the production can be conducted at any intended optimization of an existing of production, and also in the design of new production lines and halls. Therefore, the use of simulation and digitization of primary production processes highly preferred option and currently is becoming a necessity. Such verification of optimal variants in the planning process prevent problems during the implementation of production and saves money and time in debugging production factors. It has its advantages even when you are archiving data on the project and the formation of a similar project in the future, these data can be used and thus shorten designing time. The advantage is the fact that the Evaluation Team which working on a project need not be physically gathered at one place and time, but you can share the information and always have on hand the current version in which the project is located. Such backup and data editing helps in managing the full life cycle of the product and production

Acknowledgement

This article was created by implementation of the grant project KEGA 004TUKE-4/2013 "Intensification of modelling in teaching II. and III. degree in the field of study 5.2.52 Industrial Engineering".

References

[1] BOŽEK, P., KUZNETSOV, A. P.: Analýza účinnosti technologického zariadenia v stratégii štruktúry

strojárstva. In: Manažment priemyselných podnikov. - ISSN 1336-5592. - Roč. 6, č. 1 (2009), s. 5-12

- [2] EDL, M., LERHER, T., ROSI, B.: Energy efficiency model for the mini-load automated storage and retrieval systems. International Journal of Advanced Manufacturing Technology, 2013, č. 2013, s. 1-19. ISSN: 0268-3768
- [3] KLOS, S., PTALAS-MALISZEWSKA, J.: The impact of ERP on maintenance management, Management and Production Engineering Review, 2013, Vol. 4, no. 3, s. 15–25
- KUDRNA, J. MILLER, A. EDL, M.: Methods of industrial engineering used in network organizations. CREATING GLOBAL COMPETITIVE ECONOMIES: A 360-DEGREE APPROACH, VOLS 1-4, s. 2037-2042, 14 – 15. 11.2011, Milan, ITALY, ISBN 978-0-9821489-6-9
- [5] LENORT, R., WICHER, P.: Methodology for investment decision-making in the area of automated waste sorting systems | Metodologia podejmowania decyzji inwestycyjnych w sferze zautomatyzowanych systemów sortowania odpadów, (2012) Przeglad Elektrotechniczny 88 (10 B) PP. 170 - 175
- [6] LIPTAI, P.:- LUMNITZER, E.: MORAVEC, M.: -HERCZNER, P.: - FIL'O, M.: Dynamická vizualizácia emisií hluku pomocou akustickej kamery, 2007. In: Environmentálne inžinierstvo a manažérstvo. - Košice: SjF TU, 2007 S. 269-276. -ISBN 9788080738945
- [7] MORHÁČ, M.: PLM riešenia nová stratégia rozvoja podnikov,
 Dostupné na internete: http://www.efocus.sk/images/ archiv/file_45_0.pdf
- [8] ROSOVÁ, A.: Analysis of corporate logistic processes and their modelling - 1. vyd - Ostrava : VŠB TU Ostrava - 2013. - 95 p.. - ISBN 978-80-248-3206-7.
- [9] STRAKA, M., MIKUŠOVÁ Z., LENORT, R.:Analysis and assessment of warehouse stock. In: Hutnické listy. Vol. 66, no. 3 (2013), p. 44-48. - ISSN 0018-8069
- [10] SANIUK S., SANIUK A.: Rapid prototyping of constraint-based production flows in outsourcing, in: Advanced Materials Research [online]. Trans Tech Publications, Switzerland 2008, Vol. 44-46, p. 355-360, http://www.scientific.net/0-87849-376-x/355/, on-line, ISSN: 1022-6680

Review process

Single-blind peer reviewed process by two reviewers.